-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtrain.py
209 lines (175 loc) · 7.67 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
import torch
import argparse
import torch.nn as nn
from pathlib import Path
import torch.onnx as onnx
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
###################################################################
# Helpers #
###################################################################
def info(msg, char = "#", width = 75):
print("")
print(char * width)
print(char + " %0*s" % ((-1*width)+5, msg) + char)
print(char * width)
def check_dir(path, check=False):
if check:
assert os.path.exists(path), '{} does not exist!'.format(path)
else:
if not os.path.exists(path):
os.makedirs(path)
return Path(path).resolve()
###################################################################
# Data Loader #
###################################################################
def get_dataloader(train=True, batch_size=64, data_dir='data'):
digits = datasets.MNIST(data_dir, train=train, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: x.reshape(28*28))
]),
target_transform=transforms.Compose([
transforms.Lambda(lambda y:
torch.zeros(10, dtype=torch.float).scatter_(0, torch.tensor(y), value=1))
])
)
return DataLoader(digits, batch_size=batch_size, shuffle=True, num_workers=0, pin_memory=True)
###################################################################
# Saving #
###################################################################
def save_model(model, device, path, name):
base = Path(path)
onnx_file = base.joinpath('{}.onnx'.format(name)).resolve()
pth_file = base.joinpath('{}.pth'.format(name)).resolve()
# create dummy variable to traverse graph
x = torch.randint(255, (1, 28*28), dtype=torch.float).to(device) / 255
onnx.export(model, x, onnx_file)
print('Saved onnx model to {}'.format(onnx_file))
# saving PyTorch Model Dictionary
torch.save(model.state_dict(), pth_file)
print('Saved PyTorch Model to {}'.format(pth_file))
###################################################################
# Models #
###################################################################
class SimpleLinear(nn.Module):
def __init__(self):
super(SimpleLinear, self).__init__()
self.layer1 = nn.Linear(28*28, 10)
def forward(self, x):
x = self.layer1(x)
return F.softmax(x, dim=1)
class NeuralNework(nn.Module):
def __init__(self):
super(NeuralNework, self).__init__()
self.layer1 = nn.Linear(28*28, 512)
self.layer2 = nn.Linear(512, 512)
self.output = nn.Linear(512, 10)
def forward(self, x):
x = F.relu(self.layer1(x))
x = F.relu(self.layer2(x))
x = self.output(x)
return F.softmax(x, dim=1)
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = x.view(-1, 1, 28, 28)
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.softmax(x, dim=1)
###################################################################
# Train/Test #
###################################################################
def train(model, device, dataloader, cost, optimizer, epoch):
model.train()
print(f'Epoch {epoch}')
for batch, (X, Y) in enumerate(dataloader):
X, Y = X.to(device), Y.to(device)
optimizer.zero_grad()
pred = model(X)
loss = cost(pred, Y)
loss.backward()
optimizer.step()
if batch % 100 == 0:
print('loss: {:>10f} [{:>5d}/{:>5d}]'.format(loss.item(), batch * len(X), len(dataloader.dataset)))
def test(model, device, dataloader, cost):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for _, (X, Y) in enumerate(dataloader):
X, Y = X.to(device), Y.to(device)
pred = model(X)
test_loss += cost(pred, Y).item()
correct += (pred.argmax(1) == Y.argmax(1)).type(torch.float).sum().item()
test_loss /= len(dataloader.dataset)
correct /= len(dataloader.dataset)
print('\nTest Error:')
print('acc: {:>0.1f}%, avg loss: {:>8f}'.format(100*correct, test_loss))
###################################################################
# Main Loop #
###################################################################
def main(data_dir, output_dir, log_dir, epochs, batch, lr, model_kind):
# use GPU?
device = 'cuda' if torch.cuda.is_available() else 'cpu'
info(f'Run params (torch v{torch.__version__})')
print(f'data: {data_dir}')
print(f'output: {output_dir}')
print(f'logs: {log_dir}')
print(f'epochs: {epochs}')
print(f'batch: {batch}')
print(f'learning_rate: {lr}')
print(f'model_kind: {model_kind}')
print(f'device: {device}')
# get data loaders
training = get_dataloader(train=True, batch_size=batch, data_dir=data_dir)
testing = get_dataloader(train=False, batch_size=batch, data_dir=data_dir)
# model
if model_kind == 'linear':
model = SimpleLinear().to(device)
elif model_kind == 'nn':
model = NeuralNework().to(device)
else:
model = CNN().to(device)
info('Model')
print(model)
# cost function
cost = torch.nn.BCELoss()
# optimizers
optimizer = optim.Adam(model.parameters(), lr=lr)
for epoch in range(1, epochs + 1):
info('Epoch {}'.format(epoch))
train(model, device, training, cost, optimizer, epoch)
test(model, device, testing, cost)
# save model
info('Saving Model')
save_model(model, device, output_dir, 'model')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='CNN Training for Image Recognition.')
parser.add_argument('-d', '--data', help='directory to training and test data', default='data')
parser.add_argument('-o', '--output', help='output directory', default='outputs')
parser.add_argument('-g', '--logs', help='log directory', default='logs')
parser.add_argument('-e', '--epochs', help='number of epochs', default=5, type=int)
parser.add_argument('-b', '--batch', help='batch size', default=100, type=int)
parser.add_argument('-l', '--lr', help='learning rate', default=0.001, type=float)
parser.add_argument('-m', '--model', help='model type', default='linear', choices=['linear', 'nn', 'cnn'])
args = parser.parse_args()
# enforce folder locatations
args.data = check_dir(args.data).resolve()
args.outputs = check_dir(args.output).resolve()
args.logs = check_dir(args.logs).resolve()
main(data_dir=args.data, output_dir=args.output, log_dir=args.logs,
epochs=args.epochs, batch=args.batch, lr=args.lr, model_kind=args.model)