-
Notifications
You must be signed in to change notification settings - Fork 201
/
Copy pathfacial_fer_model.py
176 lines (139 loc) · 5.99 KB
/
facial_fer_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# This file is part of OpenCV Zoo project.
# It is subject to the license terms in the LICENSE file found in the same directory.
#
# Copyright (C) 2022, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
# Third party copyrights are property of their respective owners.
import numpy as np
import cv2 as cv
class FacialExpressionRecog:
def __init__(self, modelPath, backendId=0, targetId=0):
self._modelPath = modelPath
self._backendId = backendId
self._targetId = targetId
self._model = cv.dnn.readNet(self._modelPath)
self._model.setPreferableBackend(self._backendId)
self._model.setPreferableTarget(self._targetId)
self._align_model = FaceAlignment()
self._inputNames = 'data'
self._outputNames = ['label']
self._inputSize = [112, 112]
self._mean = np.array([0.5, 0.5, 0.5])[np.newaxis, np.newaxis, :]
self._std = np.array([0.5, 0.5, 0.5])[np.newaxis, np.newaxis, :]
@property
def name(self):
return self.__class__.__name__
def setBackendAndTarget(self, backendId, targetId):
self._backendId = backendId
self._targetId = targetId
self._model.setPreferableBackend(self._backendId)
self._model.setPreferableTarget(self._targetId)
def _preprocess(self, image, bbox):
if bbox is not None:
image = self._align_model.get_align_image(image, bbox[4:].reshape(-1, 2))
image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
image = image.astype(np.float32, copy=False) / 255.0
image -= self._mean
image /= self._std
return cv.dnn.blobFromImage(image)
def infer(self, image, bbox=None):
# Preprocess
inputBlob = self._preprocess(image, bbox)
# Forward
self._model.setInput(inputBlob, self._inputNames)
outputBlob = self._model.forward(self._outputNames)
# Postprocess
results = self._postprocess(outputBlob)
return results
def _postprocess(self, outputBlob):
result = np.argmax(outputBlob[0], axis=1).astype(np.uint8)
return result
@staticmethod
def getDesc(ind):
_expression_enum = ["angry", "disgust", "fearful", "happy", "neutral", "sad", "surprised"]
return _expression_enum[ind]
class FaceAlignment():
def __init__(self, reflective=False):
self._std_points = np.array([[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], [41.5493, 92.3655], [70.7299, 92.2041]])
self.reflective = reflective
def __tformfwd(self, trans, uv):
uv = np.hstack((uv, np.ones((uv.shape[0], 1))))
xy = np.dot(uv, trans)
xy = xy[:, 0:-1]
return xy
def __tforminv(self, trans, uv):
Tinv = np.linalg.inv(trans)
xy = self.__tformfwd(Tinv, uv)
return xy
def __findNonreflectiveSimilarity(self, uv, xy, options=None):
options = {"K": 2}
K = options["K"]
M = xy.shape[0]
x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
# print '--->x, y:\n', x, y
tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1))))
tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1))))
X = np.vstack((tmp1, tmp2))
# print '--->X.shape: ', X.shape
# print 'X:\n', X
u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
U = np.vstack((u, v))
# print '--->U.shape: ', U.shape
# print 'U:\n', U
# We know that X * r = U
if np.linalg.matrix_rank(X) >= 2 * K:
r, _, _, _ = np.linalg.lstsq(X, U, rcond=-1)
# print(r, X, U, sep="\n")
r = np.squeeze(r)
else:
raise Exception("cp2tform:twoUniquePointsReq")
sc = r[0]
ss = r[1]
tx = r[2]
ty = r[3]
Tinv = np.array([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]])
T = np.linalg.inv(Tinv)
T[:, 2] = np.array([0, 0, 1])
return T, Tinv
def __findSimilarity(self, uv, xy, options=None):
options = {"K": 2}
# uv = np.array(uv)
# xy = np.array(xy)
# Solve for trans1
trans1, trans1_inv = self.__findNonreflectiveSimilarity(uv, xy, options)
# manually reflect the xy data across the Y-axis
xyR = xy
xyR[:, 0] = -1 * xyR[:, 0]
# Solve for trans2
trans2r, trans2r_inv = self.__findNonreflectiveSimilarity(uv, xyR, options)
# manually reflect the tform to undo the reflection done on xyR
TreflectY = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]])
trans2 = np.dot(trans2r, TreflectY)
# Figure out if trans1 or trans2 is better
xy1 = self.__tformfwd(trans1, uv)
norm1 = np.linalg.norm(xy1 - xy)
xy2 = self.__tformfwd(trans2, uv)
norm2 = np.linalg.norm(xy2 - xy)
if norm1 <= norm2:
return trans1, trans1_inv
else:
trans2_inv = np.linalg.inv(trans2)
return trans2, trans2_inv
def __get_similarity_transform(self, src_pts, dst_pts):
if self.reflective:
trans, trans_inv = self.__findSimilarity(src_pts, dst_pts)
else:
trans, trans_inv = self.__findNonreflectiveSimilarity(src_pts, dst_pts)
return trans, trans_inv
def __cvt_tform_mat_for_cv2(self, trans):
cv2_trans = trans[:, 0:2].T
return cv2_trans
def get_similarity_transform_for_cv2(self, src_pts, dst_pts):
trans, trans_inv = self.__get_similarity_transform(src_pts, dst_pts)
cv2_trans = self.__cvt_tform_mat_for_cv2(trans)
return cv2_trans, trans
def get_align_image(self, image, lm5_points):
assert lm5_points is not None
tfm, trans = self.get_similarity_transform_for_cv2(lm5_points, self._std_points)
return cv.warpAffine(image, tfm, (112, 112))